Serveur d'exploration sur la pourriture ligneuse

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Metabolite secretion, Fe(3+)-reducing activity and wood degradation by the white-rot fungus Trametes versicolor ATCC 20869.

Identifieur interne : 000970 ( Main/Exploration ); précédent : 000969; suivant : 000971

Metabolite secretion, Fe(3+)-reducing activity and wood degradation by the white-rot fungus Trametes versicolor ATCC 20869.

Auteurs : André Aguiar [Brésil] ; Daniela Gavioli [Brésil] ; André Ferraz [Brésil]

Source :

RBID : pubmed:25442296

Descripteurs français

English descriptors

Abstract

Trametes versicolor is a promising white-rot fungus for the biological pretreatment of lignocellulosic biomass. In the present work, T. versicolor ATCC 20869 was grown on Pinus taeda wood chips under solid-state fermentation conditions to examine the wood-degrading mechanisms employed by this fungus. Samples that were subjected to fungal pretreatment for one-, two- and four-week periods were investigated. The average mass loss ranged from 5 % to 8 % (m m(-)(1)). The polysaccharides were preferentially degraded: hemicellulose and glucan losses reached 13.4 % and 6.9 % (m m(-)(1)) after four weeks of cultivation, respectively. Crude enzyme extracts were obtained and assayed using specific substrates and their enzymatic activities were measured. Xylanases were the predominant enzymes, while cellobiohydrolase activities were marginally detected. Endoglucanase activity, β-glucosidase activity, and wood glucan losses increased up to the second week of biodegradation and remained constant after that time. Although no lignin-degrading enzyme activity was detected, the lignin loss reached 7.5 % (m m(-)(1)). Soluble oxalic acid was detected in trace quantities. After the first week of biodegradation, the Fe(3+)-reducing activity steadily increased with time, but the activity levels were always lower than those observed in the undecayed wood. The progressive wood polymer degradation appeared related to the secretion of hydrolytic enzymes, as well as to Fe(3+)-reducing activity, which was restored in the cultures after the first week of biodegradation.

DOI: 10.1016/j.funbio.2014.08.004
PubMed: 25442296


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Metabolite secretion, Fe(3+)-reducing activity and wood degradation by the white-rot fungus Trametes versicolor ATCC 20869.</title>
<author>
<name sortKey="Aguiar, Andre" sort="Aguiar, Andre" uniqKey="Aguiar A" first="André" last="Aguiar">André Aguiar</name>
<affiliation wicri:level="2">
<nlm:affiliation>Instituto de Recursos Naturais, Universidade Federal de Itajubá, CP 50, 37500-903 Itajubá, MG, Brazil. Electronic address: aguiar@unifei.edu.br.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Instituto de Recursos Naturais, Universidade Federal de Itajubá, CP 50, 37500-903 Itajubá, MG</wicri:regionArea>
<placeName>
<region type="state">Minas Gerais</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gavioli, Daniela" sort="Gavioli, Daniela" uniqKey="Gavioli D" first="Daniela" last="Gavioli">Daniela Gavioli</name>
<affiliation wicri:level="4">
<nlm:affiliation>Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, 12602-810 Lorena, SP, Brazil. Electronic address: dandagavioli@yahoo.com.br.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, 12602-810 Lorena, SP</wicri:regionArea>
<placeName>
<region type="state">État de São Paulo</region>
<settlement type="city">São Paulo</settlement>
</placeName>
<orgName type="university">Université de São Paulo</orgName>
</affiliation>
</author>
<author>
<name sortKey="Ferraz, Andre" sort="Ferraz, Andre" uniqKey="Ferraz A" first="André" last="Ferraz">André Ferraz</name>
<affiliation wicri:level="4">
<nlm:affiliation>Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, 12602-810 Lorena, SP, Brazil. Electronic address: aferraz@debiq.eel.usp.br.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, 12602-810 Lorena, SP</wicri:regionArea>
<placeName>
<region type="state">État de São Paulo</region>
<settlement type="city">São Paulo</settlement>
</placeName>
<orgName type="university">Université de São Paulo</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25442296</idno>
<idno type="pmid">25442296</idno>
<idno type="doi">10.1016/j.funbio.2014.08.004</idno>
<idno type="wicri:Area/Main/Corpus">000907</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000907</idno>
<idno type="wicri:Area/Main/Curation">000907</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000907</idno>
<idno type="wicri:Area/Main/Exploration">000907</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Metabolite secretion, Fe(3+)-reducing activity and wood degradation by the white-rot fungus Trametes versicolor ATCC 20869.</title>
<author>
<name sortKey="Aguiar, Andre" sort="Aguiar, Andre" uniqKey="Aguiar A" first="André" last="Aguiar">André Aguiar</name>
<affiliation wicri:level="2">
<nlm:affiliation>Instituto de Recursos Naturais, Universidade Federal de Itajubá, CP 50, 37500-903 Itajubá, MG, Brazil. Electronic address: aguiar@unifei.edu.br.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Instituto de Recursos Naturais, Universidade Federal de Itajubá, CP 50, 37500-903 Itajubá, MG</wicri:regionArea>
<placeName>
<region type="state">Minas Gerais</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Gavioli, Daniela" sort="Gavioli, Daniela" uniqKey="Gavioli D" first="Daniela" last="Gavioli">Daniela Gavioli</name>
<affiliation wicri:level="4">
<nlm:affiliation>Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, 12602-810 Lorena, SP, Brazil. Electronic address: dandagavioli@yahoo.com.br.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, 12602-810 Lorena, SP</wicri:regionArea>
<placeName>
<region type="state">État de São Paulo</region>
<settlement type="city">São Paulo</settlement>
</placeName>
<orgName type="university">Université de São Paulo</orgName>
</affiliation>
</author>
<author>
<name sortKey="Ferraz, Andre" sort="Ferraz, Andre" uniqKey="Ferraz A" first="André" last="Ferraz">André Ferraz</name>
<affiliation wicri:level="4">
<nlm:affiliation>Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, 12602-810 Lorena, SP, Brazil. Electronic address: aferraz@debiq.eel.usp.br.</nlm:affiliation>
<country xml:lang="fr">Brésil</country>
<wicri:regionArea>Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, 12602-810 Lorena, SP</wicri:regionArea>
<placeName>
<region type="state">État de São Paulo</region>
<settlement type="city">São Paulo</settlement>
</placeName>
<orgName type="university">Université de São Paulo</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Fungal biology</title>
<idno type="ISSN">1878-6146</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Complex Mixtures (isolation & purification)</term>
<term>Fermentation (MeSH)</term>
<term>Ferric Compounds (metabolism)</term>
<term>Hydrolases (analysis)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Pinus taeda (microbiology)</term>
<term>Polysaccharides (analysis)</term>
<term>Time Factors (MeSH)</term>
<term>Trametes (growth & development)</term>
<term>Trametes (metabolism)</term>
<term>Wood (chemistry)</term>
<term>Wood (metabolism)</term>
<term>Wood (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Bois (composition chimique)</term>
<term>Bois (microbiologie)</term>
<term>Bois (métabolisme)</term>
<term>Composés du fer III (métabolisme)</term>
<term>Facteurs temps (MeSH)</term>
<term>Fermentation (MeSH)</term>
<term>Hydrolases (analyse)</term>
<term>Mélanges complexes (isolement et purification)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Pinus taeda (microbiologie)</term>
<term>Polyosides (analyse)</term>
<term>Trametes (croissance et développement)</term>
<term>Trametes (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Hydrolases</term>
<term>Polysaccharides</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Complex Mixtures</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Ferric Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Hydrolases</term>
<term>Polyosides</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Bois</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Trametes</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Trametes</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Mélanges complexes</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Trametes</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Bois</term>
<term>Pinus taeda</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Pinus taeda</term>
<term>Wood</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Bois</term>
<term>Composés du fer III</term>
<term>Trametes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Fermentation</term>
<term>Oxidation-Reduction</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Facteurs temps</term>
<term>Fermentation</term>
<term>Oxydoréduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Trametes versicolor is a promising white-rot fungus for the biological pretreatment of lignocellulosic biomass. In the present work, T. versicolor ATCC 20869 was grown on Pinus taeda wood chips under solid-state fermentation conditions to examine the wood-degrading mechanisms employed by this fungus. Samples that were subjected to fungal pretreatment for one-, two- and four-week periods were investigated. The average mass loss ranged from 5 % to 8 % (m m(-)(1)). The polysaccharides were preferentially degraded: hemicellulose and glucan losses reached 13.4 % and 6.9 % (m m(-)(1)) after four weeks of cultivation, respectively. Crude enzyme extracts were obtained and assayed using specific substrates and their enzymatic activities were measured. Xylanases were the predominant enzymes, while cellobiohydrolase activities were marginally detected. Endoglucanase activity, β-glucosidase activity, and wood glucan losses increased up to the second week of biodegradation and remained constant after that time. Although no lignin-degrading enzyme activity was detected, the lignin loss reached 7.5 % (m m(-)(1)). Soluble oxalic acid was detected in trace quantities. After the first week of biodegradation, the Fe(3+)-reducing activity steadily increased with time, but the activity levels were always lower than those observed in the undecayed wood. The progressive wood polymer degradation appeared related to the secretion of hydrolytic enzymes, as well as to Fe(3+)-reducing activity, which was restored in the cultures after the first week of biodegradation. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25442296</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>07</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1878-6146</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>118</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2014</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Fungal biology</Title>
<ISOAbbreviation>Fungal Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Metabolite secretion, Fe(3+)-reducing activity and wood degradation by the white-rot fungus Trametes versicolor ATCC 20869.</ArticleTitle>
<Pagination>
<MedlinePgn>935-42</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.funbio.2014.08.004</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S1878-6146(14)00134-2</ELocationID>
<Abstract>
<AbstractText>Trametes versicolor is a promising white-rot fungus for the biological pretreatment of lignocellulosic biomass. In the present work, T. versicolor ATCC 20869 was grown on Pinus taeda wood chips under solid-state fermentation conditions to examine the wood-degrading mechanisms employed by this fungus. Samples that were subjected to fungal pretreatment for one-, two- and four-week periods were investigated. The average mass loss ranged from 5 % to 8 % (m m(-)(1)). The polysaccharides were preferentially degraded: hemicellulose and glucan losses reached 13.4 % and 6.9 % (m m(-)(1)) after four weeks of cultivation, respectively. Crude enzyme extracts were obtained and assayed using specific substrates and their enzymatic activities were measured. Xylanases were the predominant enzymes, while cellobiohydrolase activities were marginally detected. Endoglucanase activity, β-glucosidase activity, and wood glucan losses increased up to the second week of biodegradation and remained constant after that time. Although no lignin-degrading enzyme activity was detected, the lignin loss reached 7.5 % (m m(-)(1)). Soluble oxalic acid was detected in trace quantities. After the first week of biodegradation, the Fe(3+)-reducing activity steadily increased with time, but the activity levels were always lower than those observed in the undecayed wood. The progressive wood polymer degradation appeared related to the secretion of hydrolytic enzymes, as well as to Fe(3+)-reducing activity, which was restored in the cultures after the first week of biodegradation. </AbstractText>
<CopyrightInformation>Copyright © 2014 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Aguiar</LastName>
<ForeName>André</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Instituto de Recursos Naturais, Universidade Federal de Itajubá, CP 50, 37500-903 Itajubá, MG, Brazil. Electronic address: aguiar@unifei.edu.br.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gavioli</LastName>
<ForeName>Daniela</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, 12602-810 Lorena, SP, Brazil. Electronic address: dandagavioli@yahoo.com.br.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ferraz</LastName>
<ForeName>André</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Departamento de Biotecnologia, Escola de Engenharia de Lorena, Universidade de São Paulo, 12602-810 Lorena, SP, Brazil. Electronic address: aferraz@debiq.eel.usp.br.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>09</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Fungal Biol</MedlineTA>
<NlmUniqueID>101524465</NlmUniqueID>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D045424">Complex Mixtures</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005290">Ferric Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011134">Polysaccharides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.-</RegistryNumber>
<NameOfSubstance UI="D006867">Hydrolases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D045424" MajorTopicYN="N">Complex Mixtures</DescriptorName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005285" MajorTopicYN="N">Fermentation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005290" MajorTopicYN="N">Ferric Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006867" MajorTopicYN="N">Hydrolases</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D041603" MajorTopicYN="N">Pinus taeda</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011134" MajorTopicYN="N">Polysaccharides</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055454" MajorTopicYN="N">Trametes</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014934" MajorTopicYN="N">Wood</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Enzymatic hydrolysis</Keyword>
<Keyword MajorTopicYN="N">Hydrolases</Keyword>
<Keyword MajorTopicYN="N">Oxalic acid</Keyword>
<Keyword MajorTopicYN="N">Oxidoreductases</Keyword>
<Keyword MajorTopicYN="N">Pinus taeda</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>05</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2014</Year>
<Month>08</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>08</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>12</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>12</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>7</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25442296</ArticleId>
<ArticleId IdType="pii">S1878-6146(14)00134-2</ArticleId>
<ArticleId IdType="doi">10.1016/j.funbio.2014.08.004</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Brésil</li>
</country>
<region>
<li>Minas Gerais</li>
<li>État de São Paulo</li>
</region>
<settlement>
<li>São Paulo</li>
</settlement>
<orgName>
<li>Université de São Paulo</li>
</orgName>
</list>
<tree>
<country name="Brésil">
<region name="Minas Gerais">
<name sortKey="Aguiar, Andre" sort="Aguiar, Andre" uniqKey="Aguiar A" first="André" last="Aguiar">André Aguiar</name>
</region>
<name sortKey="Ferraz, Andre" sort="Ferraz, Andre" uniqKey="Ferraz A" first="André" last="Ferraz">André Ferraz</name>
<name sortKey="Gavioli, Daniela" sort="Gavioli, Daniela" uniqKey="Gavioli D" first="Daniela" last="Gavioli">Daniela Gavioli</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WhiteRotV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000970 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000970 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WhiteRotV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25442296
   |texte=   Metabolite secretion, Fe(3+)-reducing activity and wood degradation by the white-rot fungus Trametes versicolor ATCC 20869.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25442296" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a WhiteRotV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 14:47:15 2020. Site generation: Tue Nov 17 14:50:18 2020